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Abstract 

Earlier papers [Willis (1986). Acta Crvst. A42, 
514-525; Schofield & Willis (1987). Acta Cryst. A43, 
803,-809] have discussed the nature of the thermal 
diffuse scattering (TDS) arising from the interaction 
of a 'white' beam of thermal neutrons with the acous- 
tic modes of vibration in a single crystal. A simpler 
version of the scattering theory is now given which 
does not have recourse to the numerous equations 
employed in previous treatments. The theory is 
applied to the interpretation of TDS data from BaF2 
and CaF2 to give the velocity of sound in these crystals 
as a function of the direction of propagation. 

I. Introduction 

This paper is concerned with the scattering of pulsed 
neutrons, where each pulse contains a wide band of 
neutron wavelengths, by acoustic phonons in a single 
crystal. The theoretical treatment for monochromatic 
neutrons, scattered by phonons through a variable 
angle, has been covered by Seeger & Teller (1942), 
Waller & Froman (1952) and Lowde (1954). The 
pulsed neutron case, dealing with a white beam of 
neutrons scattered at a fixed angle, has unusual 
features which do not .occur in the monochromatic 
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case. These features give rise to the possibility of 
carrying out novel inelastic experiments, as we shall 
describe later. 

The main features of the scattering theory for 
pulsed neutrons have been described by Willis (1986) 
and by Schofield & Willis (1987). For slower-than- 
sound neutrons, scattered at a fixed angle close to 
180 ° (i.e. in back scattering), there is a wavelength 
window in the incident beam for which thermal 
diffuse scattering is forbidden. One edge of the win- 
dow is associated with the absorption of acoustic 
phonons, and the other edge with their emission. By 
measuring the cut-off wavelengths for different angles 
of offset from the Bragg position, it is possible to 
determine the velocity of these acoustic phonons as 
a function of their direction of propagation. Earlier 
results from pyrolytic graphite have been given by 
Willis, Carlile, Ward, David & Johnson (1986). 

In the next section we show how the principal 
results of the scattering theory can be derived using 
simple geometrical arguments alone. It is assumed 
that the crystal is elastically isotropic, whereas all 
crystals (including cubic crystals) are elastically 
anisotropic. For this reason the analysis is extended 
in §3 to the anisotropic case. Experimental results on 
the isomorphous crystals barium fluoride and calcium 
fluoride, which have different degrees of elastic 
anisotropy, are presented in § 4. 

© 1989 International Union of Crystallography 
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2. Properties of the scattering surface 

For both elastic and inelastic scattering processes, we 
define the scattering surface as the locus in reciprocal 
space of the end-point of the wave vector, k, of the 
scattered radiation. (k is a vector which lies along the 
scattering direction and has a magnitude of 27r/scat- 
tered wavelength.) In a fixed-wavelength variable- 
angle experiment the scattering surface is derived by 
plotting the end-point of k for different values of the 
scattering angle 20; for a white-beam fixed-angle 
experiment it is obtained by plotting the end-point 
of k for different values of the incident wavelength. 
For these two experimental arrangements the scatter- 
ing surfaces are quite different, both for elastic and 
for inelastic processes. Thus there are four cases 
which we shall discuss separately in the following 
sections. 

(i) Elastic scattering 

(a) Fixed wavelength. Fig. 1 shows the reciprocal 
lattice with its origin at O. ko is the wave vector of 
the incident neutrons and 20, the scattering angle, is 
the angle between ko and k. The incident wavelength, 
A, is fixed and so the magnitude of k0 (=2~r/A) is 
also fixed. For elastic scattering, there is no exchange 
of energy with the crystal, and consequently k is equal 
to ko. The point Q in Fig. 1 is the end-point of k and, 
as 20 varies, Q moves along the surface of a sphere: 
the Ewald sphere. If the sphere passes through a 
reciprocal-lattice point, then Bragg scattering takes 
place from that point. Provided there is no kind of 
disorder in the crystal (for example, chemical, 
isotopic, magnet ic , . . . )  this is the only elastic scatter- 
ing process possible. 

(b) Fixed angle. Next we consider a pulsed-neutron 
experiment in which a white beam containing a wide 
range of wavelengths strikes a stationary crystal. 
The scattered neutrons are observed at a single fixed 
angle 20. 

Q • 

• Ewo~ Sphere L '~ 

• (:.  - o70 
Fig. 1. The scattering surface for elastic scattering of  mono- 

chromatic neutrons at a variable scattering angle 20. k o is 
inversely proportional to the neutron wavelength. 

Fig. 2 is the diagram in reciprocal space corre- 
sponding to Fig. 1. ko terminates at the origin O. Its 
length (ko) varies inversely with the incident 
wavelength, but, for a given value of ko, the wave 
number k of the scattered radiation is also equal to 
/Co. Clearly, the elastic scattering surface is the straight 
line OR in Fig. 2, which is inclined at an angle of 
7 r / 2 - 0  to the incident beam. In three dimensions 
the scattering surface is therefore a right-circular cone 
with its axis along ko and with a semi-angle of 7r/2 - 0. 
Bragg scattering can only occur if 0 is chosen so that 
the cone passes through a reciprocal-lattice point. 

Both scattering surfaces in (i) (a) and (i) (b) were 
first discussed by Ewald (1919). In the fixed- 
wavelength case the surface is known as the Ewald 
sphere; in the fixed-angle case we shall refer to the 
surface as 'the Ewald cone'. 

(ii) Inelastic scattering 

(a) Fixed wavelength. We shall now consider one- 
phonon inelastic scattering in which the scattered 
neutron exchanges a quantum of vibrational energy 
with the crystal. The topology of the inelastic scatter- 
ing surface is governed by the conservation relations 
for energy and momentum. 

For scattering by long-wavelength acoustic modes 
of vibration (i.e. sound waves), energy conservation 
requires that (Willis, 1986) 

k -  ko = -e/3q, (1) 

where q is the wave number of the sound wave, 
assumed small, and/3 is the ratio of the phase velocity 
of sound in the crystal to the incident neutron 
velocity: 

/3 = c, l v . .  (2) 

e in (1) can be either +1 or -1  : +1 refers to phonon 
creation and neutron energy loss, and -1  to phonon 
annihilation and neutron energy gain. 

Momentum conservation requires that the phonon 
wave vector q is the vector joining the end-point of 
k with the nearest point of the reciprocal lattice. 

R 

O ~ O  • 
12-e  

L 

Ewold 
cone 

Fig. 2. The scattering surface for elastic scattedng of  'white' 
neutrons at a fixed scattering angle 20. 
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In the ne ighbourhood  of  the reciprocal-lattice point  
P, we have the situation shown in Fig. 3(a).  When 
Q, the end-point  of  k, lies inside the Ewald sphere, 
k < ko and scattering occurs by energy loss. Since the 
wave number  of sound waves is much less than that 
of  thermal  neutrons,  i.e. q < ko, the Ewald sphere can 
be replaced to a good approximat ion  by its tangential  
plane normal  to the scattered direction, as shown on 
an enlarged scale in Fig. 3(b). In scanning across the 
reciprocal-lattice point by varying 20, the represen- 
tative point  Q traces out the locus shown as 
QQ'Q".. .  in Fig. 3(b). The perpendicular  distance 
of Q from the Ewald surface is k o -  k, which is equal  
to /3q from (1) with e = +1. q is the distance of  Q 
from the fixed point P. Hence the ratio QP/QN is 
1//3, and, provided that the velocity of sound in the 
crystal is independen t  of  its direction of propagation,  
the locus of Q is a conic with eccentricity 1//3. If  the 
neutron velocity exceeds the sound velocity (/3 < 1), 
the inelastic-scattering surface is a rotational hyper- 
boloid, whereas if  the neutrons are slower than the 
sound velocity ( /3> 1), the scattering surface is a 
rotational ellipsoid. 

These surfaces are il lustrated in Fig. 4(a)  for faster- 
than-sound neutrons and in Fig. 4(b) for slower-than- 
sound neutrons. Two sets of  surfaces are drawn, each 
set corresponding to a different distance of the 
reciprocal-lattice points PI and P2 from the Ewald 
sphere. The contr ibut ion of  thermal  diffuse scattering 
to the measured  Bragg intensity is derived by sum- 
ming the individual  contr ibutions of those phonon  
states in Fig. 4 which lie on the scattering surfaces 

• • ' • •  
Tangential Q~,rq~r ~ plane 

k Ewald sphere 

0 (a) 

N Nl II N 

ko- Qll 

(b) 
Fig. 3. (a) The inelastic scattering of monochromatic neutrons in 

the case of neutron energy loss (e = + 1). The process is shown 
on an enlarged scale in (b). 

and can be seen by the detector. The resultant scatter- 
ing patterns are il lustrated in Fig. 5. For faster-than- 
sound neutrons,  the TDS rises to a m a x i m u m  at the 
centre of the Bragg peak because the number  of states 
contributing to the TDS remains unchanged during 
the scan, while the intensity per phonon state varies 
as 1/q 2. On the other hand,  for s lower-than-sound 
neutrons the TDS is constant across the Bragg peak, 
because the increase in intensity arising from the l /q  2 
term is exactly ba lanced by a progressive reduction 
in the number  of accessible states as the centre of the 
peak is approached (Willis, 1970). 

- ~  Tangential 
' ~ ~ 1  a ~ plane 

(a) 

Tangential 
plane 

(b) 

Fig. 4. Inelastic scattering surfaces for monochromatic neutrons 
scattered through a variable angle 20. (a) Incident neutrons 
faster than sound, permitting both energy loss and energy gain. 
The surfaces are hyperboloidal. (b) Incident neutrons slower 
than sound, where only energy gain is possible. The surfaces are 
ellipsoidal. 

TDS intensity TDS iniensdy 

2e B 2e 20 B 20 

(a) (b) 

Fig. 5. The TDS intensity in the neighbourhood of a Bragg peak, 
scanned as a function of scattering angle 20 at constant neutron 
wavelength: (a) faster-than-sound neutrons; (b) slower-than- 
sound neutrons. 
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(b) Fixed angle. The derivation of the topology of 
the scattering surface follows exactly the same pro- 
cedure as in (ii) (a),  apart from one important 
difference. The scattering surface is now inclined at 
an angle of 7 r / 2 - 0  to the scattering direction, 
whereas in (ii) (a)  these two directions are perpen- 
dicular to one another. Thus Fig. 3 must be redrawn 
as Fig. 6. 

The perpendicular distance QN of Q in Fig. 6(a)  
from the Ewald cone is ( k o -  k) cos 0 =/3q cos 0, and 
so the ratio Q P / Q N  is 1/(/3 cos 0). As in the fixed- 
wavelength case, the inelastic scattering surface is a 
conic, but its eccentricity is (sec 0)//3, rather than 
1//3. This is shown on an enlarged scale in Fig. 6(b). 
Irl scanning across the reciprocal-lattice point by 
varying the incident wavelength )t the representative 
point Q traces out the locus shown as QQ'Q". The 
properties of the surface are described conveniently 
under the three ranges of /3 :  (1) fl < 1, (2) 1 </3 < 
sec 0, (3)/3 > sec 0. We shall ignore case (3) because, 
since 0 is almost equal to zr/2 for the measurements 
to be described later, sec 0 tends to infinity and case 
(3) is not encountered. There remain two categories, 
/3 < 1 and /3 > 1, and for both these the scattering 
surface is a rotational hyperboloid. Only for the third 
case of/3 > sec 0 is the scattering surface an ellipsoid. 

However, there is a fundamental distinction 
between the scattering surfaces for faster-than-sound 

M TT 

k Ewold cone 

(a) 

M 

? 

(b) 

Fig. 6. (a) The inelastic scattering of 'white' neutrons in the case 
of neutron-energy loss (e =+1). The process is shown on an 
enlarged scale in (b). The scattering angle is variable in Fig. 3 
but is fixed in Fig. 6. 

neutrons (/3 < 1) and for slower-than-sound neutrons 
(/3 > 1). This is illustrated by Fig. 7, which is drawn 
to scale for a scattering angle of 170 ° and for/3 = 1.2. 
There is a finite band of  wavelengths for which neither 
branch of the scattering surface is intersected by the 
scattered wave vector: hence, for slower-than-sound 
neutrons one-phonon scattering is forbidden within 
a certain wavelength rang~, or window, of the incident 
radiation. There is no such window for faster-than- 
sound neutrons, because the scattered wave vector k 
intersects both branches of the scattering surface at 
all incident wavelengths. 

The width of the wavelength window A;t is propor- 
tional to the Bragg offset angle AO, which is defined 
as the angle in the scattering plane required to bring 
the crystal to the Bragg reflecting position. From 
equation (40) of Willis (1986) the total width of the 
window for back scattering with 20 ~ 20a = 7r is 

AA = AB(/3 2 -  1) '/2 AO (3) 

where A8 is the wavelength for Bragg scattering. The 
cut-off wavelengths are 

AB + (1/2)  AX 

and so, if the offset angle is small, the wavelengths 
at the two edges of the window are symmetrically 
located on either side of  the Bragg wavelength. 

The form of  the TDS in scanning through the Bragg 
peak in a fixed-angle experiment is illustrated in 
Fig. 8. The faster-than-sound case in Fig. 8(a)  is very 
similar to that in Fig. 5(a)  for a constant-wavelength 
scan, whereas the slower-than-sound case in Fig. 8(b) 
bears no resemblance to Fig. 5(b). 

The appearance of the edges indicated in Fig. 8(b) 
enables novel experiments to be carried out by the 
pulsed neutron method. The wavelengths of the 
edges are readily measured by time of flight, and then 
(3) is used to determine /3 from the slope at the 
cross-over point of AA versus AO. Taking the neutron 
velocity v, as that of the neighbouring Bragg peak, 
the sound velocity is given by (2). The direction of 
propagation with respect to the normal to the Bragg 

Axis of conic 

ko ~' 

bond of 
forbidden 
wovelengths 

Fig. 7. The inelastic scattering surfaces for 'white' neutrons scat- 
tered through a fixed angle 20. 0s has been chosen to be 90 ° 
and 20 to be 170 °. There is a finite band of incident wavelengths 
in the neighbourhood of the Bragg wavelength for which an 
intersection is not possible between k and the scattering surfaces. 
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plane is derived using the expression 

~" = 7r/2 + arc sin (1//3) 

[see equation (41) of Willis (1986)]. 

3. Elastically anisotropic crystals 

We now consider the question of elastic anisotropy. 
It has been assumed so far that /3 is constant: this 
assumption is not valid for the vast majority of crys- 
tals, which are elastically anisotropic and propagate 
sound at a velocity varying with direction. 

The scattering surfaces in § 2 were drawn for the 
scattered wave vector k extending throughout the 
whole of reciprocal space. However, the location of 
the edge of the wavelength window is determined by 
the single point in reciprocal space where k is tangen- 
tial to the scattering surface; we shall now show that, 
for either the isotropic or the anisotropic propagation 
of sound, this point can be located without consider- 
ing the topology of the rest of the scattering surface. 
(We have shown that the scattering surface is 
described by a simple conic for isotropic propaga- 
tion; the surface is considerably more complex for 
anisotropic propagation.) 

Fig. 9 shows an arbitrary vector k terminating at a 
point Q on the scattering surface. The energy of the 
neutron at Q is 

E .  = h2k2/2m, 

with h = h/27r and m, the neutron mass. If Q is 
shifted along the scattering surface to Q' by an incre- 
mental amount dk = QQ' then the incremental change 
of energy is 

dE.  = ( h 2 k / m . )  d k =  hr. dk. (4) 

The condition for k to be a tangent to the scattering 
surface is that the line QQ' is collinear with the 
scattered direction, as illustrated in Fig. 9. 

The change in the neutron energy dE,, is exactly 
counterbalanced by a corresponding change in the 

vibrational energy of the crystal. The phonon associ- 
ated with Q is q, which is the vector to the reciprocal- 
lattice point P, and the phonon associated with Q' is 
q' (see Fig. 9). The energy of the phonon q is 

Eph = h t o ( q )  

where to(q) is its (circular) frequency. Thus the incre- 
mental change in phonon energy between Q and Q' 
is the scalar product 

d E p h  = gradq [ hto(q)], f~ dk (5) 

with f~ denoting a unit vector. 
The conservation of energy requires that 

dEph = -dE,,  

for scattering by neutron-energy loss (e = + 1), and 

dEph = +dE ,  

for scattering by neutron-energy gain (e = -1) .  From 
(4) and (5) we obtain the expression 

v, = e gradq [to(q)].f~. (6) 

Equation (6) has a very simple interpretation. 
gradq [to(q)] denotes the group velocity of sound in 
the crystal, and so the edge of the wavelength window 
corresponds to that neutron velocity in the incident 
beam which is equal to the group velocity resolved 
in the direction of the scattered beam. Moreover, the 
TDS intensity rises to a sharp maximum at the edge, 
because the density of phonon states which contribute 
to the intensity for a fixed ko increases sharply as k 
touches the scattering surface. 

For isotropic sound propagation, the group velocity 
and phase velocity are the same. All the formulae 
derived by Willis (1986) for isotropic propagation 
can be used for anisotropic propagation, provided 
that/3 is replaced by fig. /3 is defined as the ratio of 
the phase velocity to the incident neutron velocity, 
whereas /3g is the ratio of the group velocity to the 
incident neutron velocity. 

TDS intensity TDS ntensity 

k B k-" 
(a) 

Fig. 8. The form of the TDS intensity in scanning through the 
Bragg peak with 'white' neutrons at a constant angle: (a) faster- 
than-sound; (b) slower-than-sound neutrons. 

E :+1 

X B X "-" 

(b) 

Scattered beam 
/ direction 

I I 

i 
I 

I 

I I Q?-.,--.-~_qJ 
dkQ~.l---q ~ P 

k 

/ ~  k o -~=0 

Fig. 9. 'White' neutrons scattered through a fixed angle with energy 
gain. The condition that k is a tangent to the scattering surface 
is that QQ' lies along the direction of the scattered beam. 
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4. Experimental measurements 

The elastic constants of a crystal are represented by 
a fourth-rank tensor, so that cubic, as well as non- 
cubic, crystals are elastically anisotropic. However, 
under certain special circumstances cubic crystals are 
nearly isotropic. Cubic crystals possess three elastic 
stiffness constants, c,~, ct2, c44, and if these constants 
satisfy the Cauchy relation 

C l l  - -  C 1 2  = 2c44, (7) 

sound waves are propagated with the same velocity 
in all directions. The Cauchy relation is obeyed 
approximately by barium fluoride at room tem- 
perature, because the anisotropy factor [(c11- 
c12)/2c44] of 0.97 (Gerlich, 1964) is close to unity. 
On the other hand, the anisotropy factor of the 
isomorphous calcium fluoride is 1.64 and so this 
crystal is distinctly anisotropic. 

The experimental measurements were carried out 
on the High Resolution Powder Diffractometer 
(HRPD) at the ISIS Pulsed Neutron Source (Johnson 
& David, 1985). Fig. 10 shows the TDS pattern in the 
vicinity of the 422 reflection from BaF2 and for 20 
detectors, each observing a different angle of offset. 
In the centre of each pattern there is the TDS window, 
which is bounded by edges with a steeply rising 
intensity. Theory indicates that the intensity should 
rise vertically, but this does not occur in practice 
because of the finite range of scattering angles, 20, 
which is covered by each detector element. For the 
2 m position of the sample from the detector, this 
range is 0.4 ° in 20. A0 in Fig. 10 is ( 0 B - 0 ) ,  and so 
the TDS pattern recorded in each detector does not 
correspond to a sharply defined offset angle but to 
offset angles spread over a range of 0.2 °. 

The crystal was oriented to bring the 440 reflection 
into exact back scattering, i.e. OB =90  °. Scattering 

Cr 2~ 
o 

e ~ 
c 
o 10- 

• i , i , i * i 

N 6O- 
E 
U 
T 

~ 5o- 
N 

S 
u 4o-  

5 

! 30-  

6 6  6 8  7 0  7 2  54 56 58 60 62 64 xi~ 
TIME ( m i c r o s e c o n d s )  

Fig. 10. The TDS pattern from the 422 reflection of barium fluoride. 
The phonon creation and phonon absorption peaks are dearly 
seen in each of the 20 detectors. 

patterns were observed for scattering angles ranging 
from 170 to 178 ° using 40 detectors grouped in two 
sets on either side of the incident beam. The positions 
in time of the edges of the TDS windows were deter- 
mined from the individual patterns such as those 
shown in Fig. 10. These positions are plotted in Fig. 
11 as a function of the scattering angle. The slope of 
the lines in Fig. 11 at a scattering angle 20 of 180 ° is 
given by 

R = At / (AOtB)= AA/(AOAB) 

where R is related to the sound velocity via (3). Note 
that the lines are not straight. Possible reasons for 
this are (i) a small departure from isotropy, (ii) 
phonon dispersion effects, and (iii) a breakdown in 
the theory for large offset angles. 

A further point to note is the symmetry of the curves 
recorded in the detectors on either side of the Bragg 
reflection. This symmetry arises because the incident 
neutron beam lies in a vertical mirror plane of the 
crystal. Irregular features in the lines, which are repro- 
duced on both sides of the detector bank (such as 
those indicated by A in Fig. 11), are real effects 
associated with the dynamical properties of the 
crystal. We are confident that this is not an instru- 
mental effect since, as the crystal is moved from the 

170 

172 

i 174 

176 

-~ 178 

d 

180 

o 

.£ 178 

o 

176 

i 174 

172 

170  

I I  

(440) 

'\ 

48 50 
1 I I I \ 
52 54 56 58 60 

Time of flight t, (msec) 

Fig. 11. The loci in time of flight of the phonon edges plotted 
versus offset angle AO for the 440 reflection from.barium fluoride 
(observed in back scattering: 20B = 180°). 
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Table 1. Barium fluoride" calculated and observed 
sound velocities 

Table 2. Calcium fluoride: calculated and observed 
sound velocities 

Velocity Velocity Velocity Velocity 
calculated measured Direction of  calculated measured Direction of  

Reflection (km s - t )  (km s - ' )  propagat ion Reflection (km s - ' )  (km s - ' )  propagat ion 

440 2.25 2.43 [ 100] 49 ° (110) 400 3.70 3.73 [ 100] 67 ° (110) 
422 2.25 2.45 [ 100] 85 ° (110) 600 3"92 3.80 [ 100] 55 ° (110) 

back-scattering condition, the irregular features fol- 
low the movement of the reflection. 

Table 1 gives the sound velocities as determined 
from the wavelength windows associated with the 440 
and 422 reflections from BaF2. The agreement with 
the velocities calculated for the transverse modes from 
the elastic constants is good but not perfect: the 
neutron values are consistently about 10% higher 
than those calculated from the elastic constants. In 
the table the direction of propagation is given as the 
angle to the [100] direction and within the (110) plane. 

Measurements were also made on a single crystal 
of calcium fluoride, which was oriented for the 
examination of h00 reflections in back scattering. The 
data are shown in Fig. 12 for one side of the detector 
bank. In the same manner as for BaF2, the times of 
flight at the edges are plotted in Fig. 13 for the 
excitations associated with the 600 and 400 Bragg 
reflections. (Note that in the time-of-flight technique 
both reflections of the single crystal are observed 
simultaneously.) The velocities are derived from the 
slopes of the AOIAt lines at AO = 0 and are given in 
Table 2. They are within 3 % of those calculated from 
the elastic constants. 

The AO/At lines have a greater curvature for CaF2 
than for BaF2. Thus the lines for both 400 and 600 
in CaF2 are skewed to longer times of flight for 
increasing offsets A0, while the symmetry on either 
side of the Bragg position is retained. We believe that 
this difference between the two fluorides arises from 
the difference in their degrees of elastic anisotropy. 

5 O  

4 5 -  

y 40-- 

35- 
N 

~ 3o_ 

! 2 O -  

T 
e r 15- 

g lo- 

d 

i f i , i i I i i 

- 

• , . , , , . , . Jr , , I 
3 0  4 0  5 0  6 0  7 0  8 0  9 0  1 0 0  1 1 0  1 2 0  , t 0  ~ 

T I M E  ( m i c r o s e c o n d s )  

Fig. 12. The TDS pattern from the 400 and 600 reflections of  
calcium fluoride at 20a = 180 °. 

Another significant feature is the repulsion of the 
A0/At lines which are associated with adjacent reflec- 
tions, as indicated by B in Fig. 13. Similarly, the 
curvature at C is caused by a repulsion by excitations 
from the 200 reflection, which lies beyond our 
observational range. 

5. Concluding remarks 

We have shown that sound velocities can be measured 
in single crystals by means of a diffraction technique 
in which pulsed neutrons are employed without 
energy selection. Qualitative differences occur in the 
results from materials with different anisotropic fac- 
tors. There appears to be no restriction on the type 
of crystal to be studied: for example optically opaque 
crystals can be examined, which are not accessible 
to measurement by Brillouin scattering. 
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Fig. 13. The phonon  edges derived from the data in Fig. 12 plotted 
in A0, /it space for the 400 and the 600 reflections of  calcium 
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We do not envisage that the present technique will 
be restricted to the determination of sound velocities. 
It can be used also to study the nature of acoustic 
vibrations in the vicinity of phase transitions, or to 
investigate excitations away from the origin of the 
Brillouin zone. These are the types of problem to be 
examined in future publications. 

We thank Dr W. I. F. David and Mr R. M. Ibberson 
for their help in carrying out the neutron experiments 
on HRPD. We are also grateful to Professor A. 
Albinati for useful discussions. 
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Abstract 

Observed anomalous scattering differences have been 
used with the direct-methods program MULTAN87 
to determine the positions of anomalous scatterers in 
a variety of metalloproteins and a small molecule. 
The lack of anomalous differences in the centric data 
did not prevent the determination of the atom posi- 
tions and the anomalous scatterers were found in all 
cases. These results show that the method may be 
useful to determine the positions of anomalous scat- 
terers in the case of multi-site genetically engineered 
proteins. 

Introduction 

Anomalous scattering measurements are increasingly 
being used in macromolecular crystal structure analy- 
sis because of the availability of synchrotron 
radiation. The variable wavelength makes avail- 
able multiple-wavelength anomalous-dispersion data 
from which structures have now been determined by 
various groups. The technique can be readily applied 
to the metalloproteins. In addition, it is becoming 
easier to prepare heavy-atom derivatives and these 
need not be isomorphous with a native protein if 
multi-wavelength techniques are used. 

The location of the metal atoms is required before 
phases can be calculated. A Patterson synthesis can 
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be used with anomalous, isomorphous or combined 
differences, but the interpretation is straightforward 
when there are only a few sites. For more than about 
four sites, interpretation becomes less easy. However, 
with genetic engineering, the possibility of incor- 
porating as many as 20 atoms into a molecule is not 
unreasonable. 

Direct methods have been used to locate metal 
atoms in proteins on the basis of isomorphous 
differences [see, for example, Wilson (1978) and 
Adams, Helliwell & Bugg (1977)]. Given the prospect 
of a large number of metal sites and the possibility 
of using multi-wavelength methods, we decided 
to explore the use of anomalous differences with 
the direct-methods program MULTAN87 (Debaer- 
demaeker, Germain, Main, Tate & Woolfson, 1987) 
to locate the metal atoms. We have restricted ourselves 
to the use of the imaginary component (Af") derived 
differences, i.e. differences measured at one wave- 
length. These are inherently more accurate than the 
estimate of Af'  from multiple-wavelength experi- 
ments because of difficulties with absorption correc- 
tions at the different wavelengths. The results are 
therefore applicable to both conventional and syn- 
chrotron X-ray sources. 

Method 

Anomalous differences can be expressed (Blundell & 
Johnson, 1976) as 

Aano = F + I - I F - [  -~ 2F~no cos (~o- ~0~no) 

= 2F~.o cos A~ (1) 

where the symbols are defined in Fig. 1. 
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